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Abstract. In this paper we provide examples, by numerical simulation using the Navier-Stokes equations for
axisymmetric laminar now. of the 'leapfrogging' motion of two, initially identical, vortex rings which share
a common axis of symmetry. We show that the number of clear passes that each ring makes through the other
increases with Reynolds number, and that as long as the configuration remains stable the two rings ultimately
merge to form a single vortex ring.

I. Introduction

The long-held fascination for vortex rings by fluid-dynamicists is well documented. For
example Acheson (1990) quotes extensively from correspondence between Kelvin and Helmholtz,
and from the latter's original paper of 1858, whilst a recent review article by Shariff and Leonard
(1992) demonstrates the ongoing interest in vortex rings. On the basis of the theorems he had
himself devised, Helmholtz deduced that when two initially identical vortex rings travel in the
same direction c••• the foremost widens and travels more slowly, the pursuer shrinks and travels
faster, till finally, if their velocities are not too different, it overtakes the first and penetrates it.
Then the same game goes on in the opposite order, so that the rings pass through each other
alternately'. In other words the vortex rings perform a leapfrogging motion.
A leapfrogging motion as described by Helmholtz can be realised in an inviscid fluid using

a model of the type adopted, for example, by Dyson (1893) in which the cross-section of the vortex
ring is small in diameter compared with the ring diameter, and is not allowed to deform from its
circular shape. In that case leapfrogging can continue indefinitely. However the inviscid-fluid
assumption itself is not sufficient to guarantee this. Shariff et al. (1988, 1989) have adopted
a contour dynamics approach to these problems, which does allow for deformation of the vortex
core. For the thinnest cores that were adopted, continued leapfrogging was established with
quasi-periodic core deformation. For thicker cores, what they describe as a resonance phenom-
enon takes place in which during each passage the aspect ratio of the initially rear vortex
increases; whilst for the thickest cores of all there was an ever-increasing elongation of the
rearward vortex ring during its very first pass through the forward ring. Of course, in real fluids
viscous diffusion may be expected to modify the vortex-ring structure. Indeed, in early experi-
ments Maxworthy (1972) did not observe a clear passage of one ring through the other, and
opined that '... contrary to popular belief, rings do not pass back and forth through one another,
but that the rearward one becomes entrained into the forward one' (by viscous effects). However,
subsequently, Yamada and Matsui (1978), see also Van Dyke (1982), were able to demonstrate
a clear passage of one vortex ring through another with the rings appearing to merge only after
a second passage. Maxworthy (1979) then correctly observed what is perhaps obvious with
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hindsight, namely that there is a continuous variation of phenomena displayed by the vortex rings
with Reynolds number. Indeed this is one of the main conclusions that can be drawn from the
present work.
Our interest in the behaviour of co-axial vortex rings originates with the work of Riley and

Weidman (1993),whose numerical and experimental work was directed at the following problem.
If two vortex rings of different diameter, but with a common axis, have circulation of opposite
sign, and lie initially in the same plane, is it possible for the two rings to remain co-planar, in the
form of a 'vortex-ring pair', in the subsequent motion? An affirmative answer to this question was
supplied, at least in the sense that a quasi-steady vortex-ring pair can propagate over several ring
diameters. In a subsequent paper, Riley (1993) has exploited the numerical technique for the
Navier-Stokes equations of Riley and Weidman to examine the behaviour of pairs of co-axial
vortex rings which have circulation of opposite sign. The absolute values of the circulation for
each ring may be different, as may their initial diameters, resulting in a rich and varied behaviour
of the vortex rings.
In the present paper we exploit that same numerical solution technique for the Navier-Stokes

equations, to discuss the behaviour of identical co-axial vortex rings, initially in tandem. We
present results from several different configurations, with a detailed discussion of one case only,
and relate our findings to earlier numerical investigations for both viscous and inviscid fluids, and
experiments. The vortex rings are assumed to be devoid of swirl. We conclude this section with
a brief account of the numerical approach, further details may be found in Riley and Weidman
(1993).
Helmholtz's equations for the vorticity tu' may be written as

aw'--V /\(v' /\w')= -vV /\ V /\w',at
where v is the kinematic viscosity, v' the velocity, t' time and

(1)

w' = V /\ v', V·v' = o. (2a, b)

Our numerical simulations of (1) and (2) are carried out in a finite circular cylindrical container of
radius a and length I, using cylindrical polar coordinates (r', 0, z') with v' = (u', o', w'). Ifyo is the
initial circulation about each vortex ring then to make our equations dimensionless we choose as
a typical length a, time a2/yo, velocity Yo/a, and vorticity yo/a2 . For axi-symmetric flow we have
the dimensionless velocity v = (u, 0, w) and vorticity w = (0, (, 0) where' = au/az - aw/ar. To
satisfy (2b) we introduce a streamfunction t/J such that

1 at/Ju=--
r az' w= 1 at/J

r ar'

and we choose to work with a vorticity function r = - r(, rather than' itself, so that

r= r(aw _ au).
ar az

The equations satisfied by rand t/J are, from the II-components of (1) and (2a),

ar + u ar + war - 2ur = D 2 r 1at ar az r Re '
D 2t/J = - r, (3a, b)
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(a) L-

Fig. I. Th e time histo ry fo r a pair of vo rtex rings with Re = 2000. 10 = 0.05. ro = 0.34, 21 = 0.1.22 = 0.25. Th e lower
cross-sectio n of the two vortex rings is shown. so that the upper bounda ry of eac h time-frame represent s the ax is of
symmetry. The lower bo undar y is a t r = 0.75, and the two vertica l boundari es a t z = 0, 2.0 represent the end-walls of the
computa tional dom ain. Black deno tes a region in which ( 100. da rk grey a region with in which 10 < ( < I00. ligh t grey

a reg ion for which 1(1 10 a nd white for whi ch « - 10.

where f) 2 = 02/0 1' 2 - 1' - t % r + 02/0Z2, and Re = f O/ V is the Reynold s number. With Zo = f/a
the bo unda ry co nd itions which mus t be sa tis fied are:

if; = u = ow/or = F = 0,
if; = u = w = 0, F = ow/or,
if; = u = w = 0, r = - rou/oz,

I' = 0,

I' = I ,

O:Sr :S l,

o:S Z :S zo, )
o Z :S Zo,

Z - 0, Zo0

(4)

The treatment of the condi tio ns for F at I' = I, z = 0, Zo follows th at developed by Wood s (1954),
as describ ed by Riley and Weidm an (1993). With cond itio ns (4) hold ing for all time t, we requi re
an initia l distribution of vorticity within th e rin gs in o rder to init iat e the ca lcula tio n. At some
insta nt, say vortici ty in th e co re of th e ring which was initia lly con centrated a t 1" = will
have d iffused a d istance If thi s co re size is small compared to the radius of the rin g, so that
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(b)

. .• t=0.40

Fig. I (continued) .

(to/Re)l /Z 1, the vorticity may be approx ima ted by the viscou s line vo rtex so lution of Lamb
(1932). At t = to then, the initial distribution for th e vort icity functi on is

r Re { . Z Z }T= - - exp - Re[(r - ro) + (z - ZI) J/4to4TCl o

+ exp { - Re[(r - ro)z + (z - zz)zJ/4t o}, (5)
where ZI, Zz a re the ax ia l position s of each ring a t t = to ; the initi al distribution of I/J is then given
from (3b).
We ha ve so lved the governing equati on s (3)- (5) using finite differ enc e method s described in

detail by Riley and Weidman , and given here in outline only. The so lution of (3a) is determined by
a sta nda rd ADI method in which advancement from t to t + 8t is ac hieved in two half-steps of
!8t. With the so lution for T det ermined at t + St, the streamfunction, velocity components, and
boundary co nd itions for T a re all upd at ed a t th at time level. This procedure is repeated over the
same tim e int er val until the so lution is deemed to have converged accord ing to some pre- set
crite rion. With spa tia l deri vati ves represented by central differences on a uniform computational
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. .

t =O.55

(e) '--

Fig. I (continued).

t =O.60

grid, the accuracy of our solution is, formall y, to 0 (8r 2 , 8z 2 , 8t 2 ). We describe, in the next section ,
so lutions obtained by this method.

2. Calculations

As we have already remarked in section 1 there was no clear passage , in Maxworthy's
experiments, of one ring through the other. By contrast, in the experiments of Yamada and
Matsui it is only during the second passage that merging of the two rings begins, due to viscous
diffusi on. Evidently the latter experiments were carried out a t a higher Reynolds number than the
former. Stanaway et a!' (1988) have attempted a simulation, from the Navier-Stokes equations of
the experiments of Yam ad a and Matsui using a spectra l meth od , and the results of their
ca lculations ar e pre sented by Shariff and Leonard (1992). With Re = vs!v= 1000 the two vortex
rings merge following one clear pas sage of the rear ring through the forward . We have repe at ed
Stan away's calculation with Re = 1000, with the initial configuration taken from fig. 6a of Shariff
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Fig . I (cont inu ed ).

t =O,65

t=O.70

t =O.75

t =O.60

and Leona rd 's review article . T his corresponds to ro = 0.34, Z t = 0,1, Z 2 = 0.45 and 10 = 0,205 in
eq, (5). T he computa t iona l dom ain has 0 r 1, 0 Z 2 with a mesh Or = oz= 0,005.
01 = 0.001. We ca n co nfirm qu al itat ive ag reement between our res ults and Stanaway's as
presented by Shariff a nd Leonard , As a seco nd example the initia l time 10 was decreased te
10 = 0.05 whi ch corresponds, from (5), to an inc rea se in peak vort icity by a fact or of fou r a nd
a decrease in the d iam eter of the ring cross-sec tion by a facto r of a bo ut two. Altho ugh the ring is
thinner initiall y, di ffusion is correspond ingly mo re rapid, and again only one clear passage of the
rings is observed befo re they merge. However , as Maxworthy (1979) has obse rved it is the
va riation in beh aviour of the vor tex rings with Reynold s number th at is impo rtant. And only as
the Reynold s number increases subs ta nt ially ca n we expec t to observe the leapfrogging beh aviour
that may be rea lised with th in rings in an inviscid fluid.
To verify th e a bove we have obtained numerical solutions which co rrespo nd to Reynold s

number s 500, 1000,2000,3000 and 4000 with ro = 0.34, Z I = 0.1, Z 2 = 0.25 and 10 = 0.05 in all
cases. T he mesh sizes rema ined unchanged , as did the computa tiona l domain, exce pt for the
highest Reynold s number fo r which 0 Z 3 with or,8z reduced by 2/ 3. The init ial spacing of
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Fi g. 1 (continued).
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the rings is now less th an for the results obta ined at Re = 1000, described above, in o rder th at the
phenomena we describe be accommodated with in our computati on al dom ain . And we not e th at
as the initial sepa ra tion increases, so th e number of clear passes will decrease, since diffusion of
vo rticity will tak e place ove r a longer peri od of tim e before the first pass is made. With th e aid of
computer animati on we have estimated the number of clear passes achieved by the ring s, and the
time tak en for them to merge . Th e results are sho wn in Tabl e 1. It is clearl y demon strat ed , that as
the Reynolds number increases, so the behaviour of the vortex rin gs approaches that predicted by
th in-ring invi scid-ftow theory .
Conside r now in det ail the results of our investiga tion for Re = 2000 wh ich are shown in fig. 1.

Each frame of fig. I shows a lower cross -sec tion of the two vortex rin gs. Th e upper boundary of
each fram e is the axis of symmetry, and the lower boundary correspo nds to r = 0.75, whil st the
two verti cal boundaries represent the end walls z = 0, 2.0 of the computa tional dom ain. We see
that at time t = 0.2 the rearward ring has passed successfully thro ugh the forward ring, and that
by t = 0.3 the two rings have, essentially, cha nged place s. During th is time there has been some
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(f) L-__ -'

Fig . I (continued).

t=1.05

t=1.10

t =1.15

t=1.20

diffusion of vorticity but virtually no distortion of the relati vely thin vortex cores. The pr ocess
repeat s itself with a seco nd successful passage completed at t = 0045, and the rings in their original
relati ve po siti on by t = 0.55. However, during the later stages of thi s seco nd passage we see that
the effects of diffusion are such th at the two rings are already beginning to merge. And although
a third pa ssage appea rs to ha ve been completed by t = 0.7, it is difficult to see how thi s could have
been visualized in an experimen t of the kind carried out by Yam ada and Matsui . Beyond t = 0.7
the merging pr ocess is rapidly completed such th at for times in excess of about 1.0 there is a single,
rather diffuse , vortex ring . We have continued the calculation to show the effect of the intera ction
of the vortex ring with the end wall z = 2.0. Results by Orlandi, which are reproduced by Shariff
and Leonard (1992), sho w simila r features to those ob ser ved here. As the vo rtex rin g appro aches
the end wall a thin boundary layer is crea ted at it, within which the vorticity has opposite sign
from that in th e co re of the rin g. As the ring advances towards the end wall the effect of the
boundary is to increase the diameter of the rin g which itself sweeps up vorticity from the wall to
crea te sepa ra tion of the boundary layer, and ind eed for t = 1.35, lAO there is evide nce of reversed
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Fig. I (continued).

Table I

Results from computer animation

t= 1.25

t=1.30

t= 1.35

t = 1.40
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Re

500
1000
2000
3000
4000

No. of passes

2
3
4
5

Time to merger

0.41
0.58
0.88
1.16
1.45

flow in the sepa rati on bubble. We do not present result s for t > 104. But we can report that for thi s
particular example the wall vo rticity wra ps itse lf around th e cor e of the vortex ring and there is
a gra dua l decay due to diffusion , with little further exp an sion of the ring .
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3. Conclusions

N . Ril ey , D.P. St evens / Leapfrogging vortex rings

In this paper we have demonstrated clearly, and for the first time, by numerical simulation that
identical viscous vortex rings in tandem with a common axis of symetry will perform a leapfrog-
ging motion in which the number of times the rings trade places increases with Reynolds number.
For thin rings in an inviscid fluid it is known that this process continues indefinitely. Furthermore
we have shown that, unless the instability associated with single rings at very high Reynolds
numbers destroys them, the two rings will eventually merge into, and propagate as, a single ring .
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