
Future Generation Computer Systems 9 (1993) 11-18 11
North-Holland

Implementing finite difference ocean
circulation models on MIMD, distributed
memory computers

A.R. Clare a and D.P. Stevens b
a Computing Centre, University of East Anglia, Norwich NR4 7TJ, U V
b School of Mathematics, University o f East Anglia, Norwich NR4 UK

Abstract

Clare, A.R. and D.P. Stevens, Implementing finite difference ocean circulation models on MIMD, distributed memory
computers, Future Generation Computer Systems 9 (1993) 11-18.

This paper considers the use of parallel computers for ocean modelling. After a brief review of the topic, the authors
describe the experience of porting a simplified ocean model onto the Computing Surface. The parallel implementation is
based on a straightforward domain decomposition. The use of CSTools in the code is briefly discussed. The performance of
the parallel code, when run on Inmos T800 transputers and Intel i860's, is compared with the performance of a serial
implementation when run on a range of commonly used serial computers (including a CRAY X-MP and an AMDAHL
VP1200).

Keywords. High performance computing; parallelism; CFD; ocean circulation models.

1. l n t roduc t io l~

Modelling the ocean requires the solution of a
set of four-dimensional (three spatial and one
temporal) partial differential equations for a
number of variables (typically velocity, tempera-
ture and salinity). The equations are solved using
finite difference techniques. Small scale ocean
eddies have a significant effect on the large scale
circulation. Therefore large high resolution grids
are required to resolve these features. Further-
more, the timescale for the adjustment of ocean
circulation is long. Thus it is necessary to run the
models for large numbers of timesteps in order to
produce useful results.

Until recently oceanographers had to rely on
crude parameterisations of the effects of eddies.
It is only now becoming possible for oceanogra-
phers to run eddy resolving models and then only

Correspondence to." A.R. Clare, Computing Centre, University
of East Anglia, Norwich NR4 7TJ, UK.

on the fastest computers. An example (with which
one of the authors is involved) is the UK Fine
Resolution Antarctic Model [13] which solves
equations for over two million variables at every
model timestep (40 minutes). Even though the
FORTRAN 77 model code is highly vectorized it
takes approximately 15 minutes (real time) to
simulate a model day on a lightly loaded CRAY
X-MP. Unfortunately this machine is usually
shared with many other users. During the course
of two years it has only been possible to integrate
FRAM for 16 model years. Even so, many new
and useful results have been obtained. Over the
next few years it is hoped that a world ocean
circulation model of similar or higher resolution
to that in FRAM will be produced. The grand
challenge in this field is to produce an accurate
world ocean circulation model and to incorporate
it into a climate modelling system. It has been
estimated that an accurate eddy resolving ocean
model would require a computer capable of 10 ~s
Flops (the fastest present day supercomputers

0376-5075/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

12 A.R. Clare, D.P. Stevens

attain roughly 109 Flops) to perform useful exper-
iments. At the present time it appears that such
performance will only be attainable through the
use of parallel architectures.

A number of researchers have implemented
ocean models on contemporary parallel comput-
ers. Two significant examples, which deal with
the implementation of global models, are Smith,
Dukowicz and Malone [11] and Semtner and
Chervin [10]. Smith et al. describe the use of a
SIMD, distributed memory, 2048 processor CM-2
Connection Machine whereas Semtner and
Chervin use a MIMD, shared memory, 4 proces-
sor CRAY X-MP/48. The implementation tech-
nique used by Smith et al. is domain decomposi-
tion (the ocean is divided up in longitude-latitude
columns). The technique used by Semtner and
Chervin may be viewed as a form of task farming
where tasks are obtained by dividing the ocean
into even sized longitude-depth slabs. By suitable
utilization of the Cray's ability to read into and
write from main memory concurrently with calcu-
lation work, processors are never delayed by the
need to perform I / O operations. In practice
Semtner and Chervin report attaining efficiencies
of over 99%. Study of examples such as these
reveals that in order to extract as much speed as
possible from the underlying hardware, numerical
techniques and programming styles must be aimed
at specific architectural details.

In global ocean circulation modelling a major
issue when designing a parallel program is how to
handle continents, islands and ocean-floor topog-
raphy, which combine to make the domain highly
non-regular. A simple approach is to use a regu-
lar grid representation of the world combined
with an array of 'start/stop indices' to mark the
beginning and end of regions of water. These
markers are then used to ensure that only points
which correspond to areas of water are solved
for. While being somewhat wasteful of store this
technique is popular because it is relatively easy
to program. On vector computers too much 'start-
ing and stopping' can defeat the vectorization
process. If the vector operation start-up time is
long (machine specific) and the areas of land are
small, it is more efficient to treat land as though
it is ocean during calculations and to mask out
the land's effect at the end of each iteration. This
approach has been used, for example by Stevens
[12], on CDC Cyber 205 and AMDAHL VP1200

vector supercomputers. Counter-intuitively, some
times doing more calculations leads to a faster
program!

A further major issue in writing efficient ocean
modelling code is dealing with the sheer volume
of data. In the FRAM project for example as
much as 100 Megabytes of information had to be
dumped every 10 model days plus 1 Megabyte
every model day. Obviously a fast I / O system,
which will not unduly delay the main calculation
work, is required.

The remainder of this paper considers ocean
modelling in the context of the Meiko Computing
Surface. A simplified ocean model is described in
Section 2 and its implementation on a Computing
Surface in Section 3. Section 4 presents some
experimental results and Section 5 gives our con-
clusions. The reader should note that this paper
is an extension of work described in Clare and
Stevens [4].

2. The sequential ocean modelling code

2.1 Three-dimensional models

Many of the three-dimensional ocean circula-
tion models used over the past twenty years origi-
nate from the pioneering work of Bryan [3]. Over
the years a number of enhancements to the model
physics, the numerical scheme and the computer
code have been made. A good description of the
basic model and code structure can be found in
Cox [5]. Semtner [9] describes the history of model
development to that date.

2.2 A simplified model

Given the complexity of three-dimensional
ocean circulation models such as that described
by Cox [5], it was decided to produce a reduced
physics version to test on the Meiko Computing
Surface. The vertical structure, which is repre-
sented by a number of different levels in the
original model, is replaced by a single active layer
overlaying a much deeper passive layer. All the
usual horizontal processes were retained. This
well-known simplification, which removes the ver-
tical dimension from the problem, results in a
one layer reduced gravity model.

Implementing finite difference ocean circulation models 13

The model equations are

0u g ' Or/
- - + r(u) - f v
Ot a cos 4 OA

(1 - tan 2 4) u
+ A m ~72u + a 2

, r X

+
P~7

2 sin 4 Ov

a2 cos2 4 0A
,

(1)
Ov g ' Or/ r y
- - + r (v) +fu - + - -

Ot a 04 p~/

((1 - t a n 2 4) v 2 s i n 4 Ou)
+ A m I72v + a2 + a2 c0s2 4 OA '

(2)

0~7
- - + r (•) = 0 , (3)
0t

where

r (/ z) a cos 4 (u/x) + ~ (v / z c o s 4)

and

+ V 2(/d.)
a 2cos 24[- 04 04

The variables A, 4, u, v, ~/, r ~, r 4 represent
longitude, latitude, zonal velocity, meridional ve-
locity, layer thickness, zonal wind stress and
meridional wind stress respectively. The radius of
the Earth is a, the reduced gravity is g ' , the
density of the active upper layer is p and
f = 2 ~ sin 4 is the Coriolis parameter where
is the speed of angular rotation of the Earth. The
coefficient for horizontal momentum mixing is

a m •
The model is discretized in the same way as

Cox [5], using a staggered spatial grid. The finite
difference scheme uses centred differencing in
space and leapfrogging in time, which is energeti-
cally consistent. This results in three explicit
prognostic equations for u, v and "0, which can
be simply stepped forward in time. A Robert time
filter [1] is used to remove the computational
mode associated with leapfrogging.

velocities respectively and E r A represents the sur-
face layer thickness. Each of these arrays is
three-dimensional. The first two dimensions rep-
resent the surface layer of the ocean as a rectan-
gular grid of points. These dimensions are of size
I MT by JMT (which are reconfigurable, program
constants). The third dimension in u, v and ETA
is needed so that the state of the ocean can be
recorded for consecutive timesteps.

The program is built around a single main
loop, each iteration of Which simulates a timestep.
Within this loop the calculation proceeds from
the southernmost row (latitude line) of ocean
points to the nothernmost. For each row, the
subroutines VELOC and THICK are called. These
subroutines calculate new values of the velocity
and thickness for all the points in the current
row. The calculation for a given row depends
upon the current values in the row itself and on
the values in the neighbouring north and south
rows over the previous two timesteps. Hence, the
arrays u, v and E T A are of size 3 in their third,
temporal dimension.

Below is the fragment of code that implements
the calculations involved in a single timestep.

DO 380 J=2 , JMT-I

IF (J .NE. JMT-I) CALL VELOC(J)

CALL THICK(J)

380 CONTINUE

Rows 1 and J MT are always land and therefore
not updated. Since the finite difference grid is
staggered, row JMT - 1 of U and v also represents
land and therefore VEL0C is not called for this
rOW.

This row update strategy is inherited from the
implementation of the full three-dimensional
model. Due to computer memory limitations it is
often impossible to hold the full three-dimen-
sional model grid in core. Hence the code has
been written in a style which enables rows to be
cycled through memory as required. Note also
that by operating on complete rows at a time,
VELOC and THICK, could be optimized for the
original target, vector processing architectures.

2.3 Overview of the sequential program

The basic structure of the more complex code
was retained. The ocean is represented by the
three arrays of real numbers: u, v and ETA. U
and v represent the eastwards and northwards

3. Parallel implementation on the ('olnputing
Surface

Parallelism is achieved by using the well docu-
mented and obviously appropriate technique of

14 A.R. Clare, D.P. Stevens

geometric decomposition. The structure of the
parallel program is similar in many ways to that
described by Barbieri, Bray and Garret [2], for
example, which describes the implementation of
a weather prediction program on the Computing
Surface.

The arrays u, v and ETA are sliced up in their
north-south, JMT dimension (so that the cuts run
from west to east) and balanced across the avail-
able processors. The processors are simply con-
nected in a ring. Each processor runs a copy of
the same program but works with a different
section of the ocean. Where necessary, different
actions are programmed for different processors
by branching on a processor's unique, numerical
identifier.

A one-dimensional decomposition was chosen
rather than a two-dimensional decomposition be-
cause it offered better potential performance.

This derives from the transputer's ability to over-
lap communication with calculation [8]. Given an
appropriate application and careful program-
ming, the cost of any communication can be
reduced to a constant (the set up time). In such
circumstances it is better to have 2 neighbours
(1D scheme) rather than 4 (2D scheme) in order
to minimize the overall ratio of communication to
calculation. Since it was possible to exploit this
feature of the transputer for the ocean modelling
application a 1D decomposition was chosen. A
similar performance model to that described by
Barbieri et al. [2] can he applied to the parallel
program described here.

The decision to perform a one-dimensional
decomposition simplified the coding work. For
example, the main two prognostic sub-routines,
THICK and VELOC, which had been written to
operate on complete west-east rows of the ocean

Table 1
The results of the North Atlantic experiment.

System Processors Time (secs) Mflops Speedup Efficiency

Amdahl VP1200 (Vector Mode) 1 63 122.48
Amdahl VP1200 (Scalar Mode) 1 740 10.50

CRAY X-MP 1 67 116.01

DEC Station 5000 1 1141 6.76

Sun SPARC 1 1 3784 2.04
Sun SPARC 2 1 1585 4.87

Inmos T800 1 31372 0.25 1.00 1.00
2 16822 0.46 1.86 0.93
3 11151 0.69 2.81 0.94
4 8465 0.91 3.71 0.93
5 6789 1.14 4.62 0.92
9 3770 2.05 8.32 0.92

11 3101 2.49 10.12 0.92
20 1764 4.37 17.78 0.89
25 1434 5.38 21.88 0.88
33 1139 6.77 27.54 0.83
50 835 9.24 37.57 0.75
99 513 15.04 61.15 0.62

Intel i860 1 1480 5.21 1.00 1.00
2 654 11.78 2.26 1.13
3 501 15.40 2.96 0.99
4 402 19.18 3.68 0.92
5 345 22.33 4.29 0.86
9 239 32.27 6.19 0.69

11 215 35.77 6.87 0.62
20 188 41.01 7.87 0.39
25 177 43.39 8.33 0.33
33 174 44.30 8.50 0.26
50 178 43.29 8.31 0.17

Implementing finite difference ocean circulation models 15

at a time, were left untouched by the port to the
parallel machine.

Given the simplicity of this particular ocean
model and the associated geometric decomposi-
tion scheme, plus the fact the solving partial
differential equations by finite differences must
constitute one of the main uses of parallel com-
puters at the present time, the coding work was
felt to be unduly difficult. Two major factors led
to difficulties:
(1) The authors lack of previous experience with

parallel programming and in particular with
using CSTools.

(2) It was felt that the facilities provided by
CSTools stopped short of what was required
to implement this application with ease.

For example, operations such as 'exchange data
with neighbour', which occur often in parallel
finite difference programs, had to be coded by
hand. This required mastery of the complicated
CSTools routines for handling asynchronous com-
munications. A further example is that a special
scheme had to be devised so processors would
write their results (in the form of large binary
data files) in a coordinated fashion. This is be-
cause CSTools has no built-in facilities to neatly
handle the situation where many processors must
each contribute a portion of a program's overall
results. The scheme finally adopted for this latter
problem, makes each processor write its results to
a separate file and then uses additional, serial,
utility programs to rework these files into what-
ever other form might be required. Finding effi-
cient and elegant solutions to these and similar
problems consumed a significant amount of time.
In view of these experiences, the authors imagine
that CSTools compares badly with some other
parallel programming environments, such as Ex-
press [6] for example which appears to provide a
higher level of support for the programmer.

4. Performance experiments

4.1 The North Atlantic experiment

A one year simulation of an idealized North
Atlantic model was used by Clare and Stevens [4]
to compare the parallel and serial implementa-
tions. Since that time the authors have been
allowed access to a larger array of Intel i860

400 1 """"t,.

200 t

100-1 "'1""t. '... TSO0
"...%

70-1 t..

~ 40-1
"1,. "3...

10 1
7

0

I I I I I I " I I
1 2 4 7 10 20 40 70 100

Number of processors

Fig. 1. The number of processors versus the time taken to
complete a one year run of the North Atlantic model (log
scales). The dotted line is for Inmos T800 processors and

the solid line is for Intel i860 processors.

processors. Furthermore some of the machines
have had compiler upgrades, which has improved
their preformance. A revised set of results are
illustrated in Table 1 and Fig. 1.

To summarize: only selected extracts from the
multi-processor results are tabulated; the geomet-
ric decomposition consisted of 99 'grains' of work
and therefore 99 processors was the maximum
that could be fruitfully used on the problem; the
timing figures given for a single transputer and a
single i860 processor were obtained by using the
original, sequential version of the program
whereas the figures given for two or more proces-
sors were obtained using the parallel version; the
results show that the two supercomputers (the
CRAY and the Amdahl) far out-perform the
other machines; the super-linear speedup exhib-
ited by two i860's is probably caused by the single
processor's performance being limited by the
speed at which it can access its local main mem-
ory, rather than the rate at which it can perform
floating-point calculations; the rapid drop in effi-
ciency, as more i860's are used, is due to their
performance being communication bound for this
model.

16 A.R. Clare, D.P. Stevens

The North Atlantic model, which is based on a
71 by 101 grid, was the author's first attempt at
producing a parallel ocean modelling code. It was
designed with transputers in mind and at a time
when the authors did not envisage having access
to i860's. To more fully explore the potential of
the i860's a second, more computationally de-
manding model has been developed, as described
below.

4.2 The Tropical Pacific experiment

As with the North Atlantic, modelling the
Tropical Pacific is a classic oceanographic prob-
lem. Gill [7] provides a good introduction to the
subject. The ocean basin extends from 32°S to
32°N and from 0°E to 100°E (note that while the
latitudinal position of the ocean basin is crucial
the longitudinal position is arbitrary). The hori-
zontal resolution is 0.25 ° , which is approximately
27 km. The size of the arrays for the prognostic
variables is 401 × 258. This provides 256 'grains'
of work.

A constant easterly wind stress of 0.05 Nm-2
is specified at the ocean surface. The parameters
A m and g ' have the values 2 x 1 0 3 m2s - l and
9.806 x 0.003 ms-~. The ocean is initially at rest
with the thickness of the upper layer set to 300 m.
The model is then integrated forward in time for
7 weeks using 1 hour timesteps.

The results from this experiment are displayed
in Table 2 and Fig. 2. It is immediately apparent
that this model is less communication bound when
run on i860's. That is, the efficiency does not
decay so rapidly as the number of processors is
increased. Further investigation has revealed that

8- r=

4- ''"'...

- "i"',..,,......, ~

2 4 6 8 10 20

Number of processors

Fig. 2. The number of i860 processors versus the time taken
to complete a seven week run of the Tropical Pacific model
(solid line). The dotted line shows the time taken excluding

I /0 . Both axes are logarithmic.

a significant proportion of the reported i860 time,
when the number of processors is large, is due to
I / O . For example, the time spent writing results
by the slowest processor in the experiment with
32 i860's is 31.2 seconds. This compares with less
than one tenth of a second on both supercomput-
ers, which are writing out 32 times more data
than each i860. If the 32 i860's had a comparable
I / O system, their overall Mflop rate might be
expected to exceed 140 Mflops.

Table 2
The results of the Tropical Pacific Experiment

System Processors Time (secs) Mflops Speedup Efficiency

Amdahl VP1200 (Vector Mode) 1 49 267.42

CRAY X-MP 1 92 142.43

DEC Station 5000 1 2771 4.73

Sun SPARC 1 1 6574 1.99
Sun SPARC 2 1 2800 4.68

Intel i860 1 2244 5.84 1.00 1.00
2 1128 11.61 1.99 0.99
4 595 22.02 3.77 0.94
8 332 39.46 6.76 0.84

16 179 73.18 12.54 0.78
32 123 106.45 18.24 0.57

Implementing finite difference ocean circulation models 17

A surprising feature of the results is that the
Mflop rate achieved by the Amdahl, when com-
pared with the result from the North Atlantic
experiment, is more than double and the total
time required to solve this more complex problem
is less. This is because the performance of the
Amdahl is improved when vector lengths are
longer. In addition there are less vector startup
operations required in the Tropical Pacific model
because it is run for fewer timesteps. The CRAY
does not exhibit similar behaviour because its
architecture is based on fixed length vector regis-
ters (64 words long) rather than arbitrary length
vector pipelines.

5. Conclusions

This paper has considered the Computing Sur-
face as a platform for ocean modelling work. The
raw speed of the i860 processors is impressive
and comparable with that of contemporary super-
computers. Unfortunately, the I / O system in the
Computing Surface is not of a similar high stan-
dard and this significantly reduces overall perfor-
mance for this application.

The simple technique of geometric decomposi-
tion is obviously appropriate for parallel ocean
modelling when the method of finite differences
is being used. In practice, coding work is compli-
cated by the need to tailor code to fit specific
computer architectures in order to maximize per-
formance. For example, on the Computing Sur-
face this typically requires exploiting the proces-
sors' ability to overlap communication with calcu-
lation. The author's look forward to the day when
standard programming interfaces will simplify
coding work while sustaining the high perfor-
mance associated with hand-tuned programs.

Acknowledgements

machine (which was used to test the code on
more than 2 i860's). Anthony Clare is supported
by the ISC HPDS initiative. Dave Stevens is
working for the FRAM project under NERC
grant GST/02/408.

References

[1] R. Asselin, 1972: Frequency filter for time integrations,
Mth. Wea. Rev. 100 (1972) 487-490.

[2] A. Barbieri, A. Bray and P. Garret, Weather prediction
using the computer surface, Surface Noise 6 (1992) 30-37.

[3] K. Bryan, A numerical method for the study of the
circulation of the world ocean. J. Comp. Phy. 4, (1969)
347-376.

[4] A.R. Clare and D.P. Stevens, Porting a finite difference
ocean circulation model to the Meiko computing surface,
Proc. Internat. Conf. Parallel Computing 91, D.J. Evans,
G.R. Joubert and H. Liddell, eds. (North-Holland, Am-
sterdam, 1992) 585-592.

[5] M.D. Cox, A primitive equation, 3-Dimensional model of
the ocean, GFDL Ocean Group Tech. Rep. No. i, 1984.

[6] J. Flower and A. Kolawa, Parallel programming with
EXPRESS, Surface Noise 6 (1992) 18-27.

[7] A.E. Gill, Atmosphere-Ocean Dynamics (Academic Press,
New York, 1992).

[8] INMOS, The Transputer Databook (Edition 2) (1989).
[9] A.J. Semtner, History and methodology of modelling the

circulation of the world ocean, Proc. NATO Advanced
Study Institute on Advanced Physical Oceanographic Nu-
merical Modelling, ed. J.J. O'Brien (Reidel, Dordrecht,
1986) 23-32.

[10] A.J. Semtner and R.M. Chervin, A simulation of the
global ocean circulation with resolved eddies, J. Geophys.
Res. 93 (C12), (1988) 15502-15222.

[11] R.D. Smith, J.K. Dukowicz and R.C. Malone, Parallel
ocean general circulation modelling, submitted to Phys-
ica D, 1992.

[12] D.P. Stevens, A numerical ocean circulation model of the
Norwegian and Greenland seas, Progress in Oceanogra-
phy 27 (1991) 365-402.

[13] The FRAM Group, Initial results from a fine resolution
model of the Southern Ocean, EOS Trans. Amer. Geo-
phys. Union 72 (1991) 169, 174-175.

The authors would like to thank: Andrew
Grant and the Manchester Computing Centre for
the use of their i860's; the Edinburgh Parallel
Computer Centre for the use of the Edinburgh
Concurrent Supercomputer (which was used to
run code on 33 or more transputers); David Wal-
lace, Ken Bowler and the EPCC again for allow-
ing us time on the Maxwell Grand Challenge

Dr. Anthony R. Clare was born in
London, 1963. He received his B.Sc.
(Hons.) in Computer Science from the
University of East Anglia in 1984, and
his Ph.D. (Evaluating Declarative
Programming Languages) from the
UEA in 1988. He has been Research
Associate at the UEA from 1988-1990,
and a Parallel Processing Support
Officer at UEA since 1990.

18 A.R. Clare, D.P. Stevens

i)r. David Slevens was born in Hast-
ings, 1962. He has his B.Sc. (Hons.) in
Mathematics from UEA in 1983, his
M.Sc. (Theoretical mechanics) from
UEA in 1984, his Ph.D. in Dynamical
Oceanography from UEA in 1988. He
is now a lecturer in Mathematics at
UEA.

