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Abstract 

Clare, A.R. and D.P. Stevens, Implementing finite difference ocean circulation models on MIMD, distributed memory 
computers, Future Generation Computer Systems 9 (1993) 11-18. 

This paper considers the use of parallel computers for ocean modelling. After a brief review of the topic, the authors 
describe the experience of porting a simplified ocean model onto the Computing Surface. The parallel implementation is 
based on a straightforward domain decomposition. The use of CSTools in the code is briefly discussed. The performance of 
the parallel code, when run on Inmos T800 transputers and Intel i860's, is compared with the performance of a serial 
implementation when run on a range of commonly used serial computers (including a CRAY X-MP and an AMDAHL 
VP1200). 
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1. l n t roduc t io l~  

Modelling the ocean requires the solution of a 
set of four-dimensional (three spatial and one 
temporal) partial differential equations for a 
number of variables (typically velocity, tempera- 
ture and salinity). The equations are solved using 
finite difference techniques. Small scale ocean 
eddies have a significant effect on the large scale 
circulation. Therefore large high resolution grids 
are required to resolve these features. Further- 
more, the timescale for the adjustment of ocean 
circulation is long. Thus it is necessary to run the 
models for large numbers of timesteps in order to 
produce useful results. 

Until recently oceanographers had to rely on 
crude parameterisations of the effects of eddies. 
It is only now becoming possible for oceanogra- 
phers to run eddy resolving models and then only 
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on the fastest computers. An example (with which 
one of the authors is involved) is the UK Fine 
Resolution Antarctic Model [13] which solves 
equations for over two million variables at every 
model timestep (40 minutes). Even though the 
FORTRAN 77 model code is highly vectorized it 
takes approximately 15 minutes (real time) to 
simulate a model day on a lightly loaded CRAY 
X-MP. Unfortunately this machine is usually 
shared with many other users. During the course 
of two years it has only been possible to integrate 
FRAM for 16 model years. Even so, many new 
and useful results have been obtained. Over the 
next few years it is hoped that a world ocean 
circulation model of similar or higher resolution 
to that in FRAM will be produced. The grand 
challenge in this field is to produce an accurate 
world ocean circulation model and to incorporate 
it into a climate modelling system. It has been 
estimated that an accurate eddy resolving ocean 
model would require a computer capable of 10 ~s 
Flops (the fastest present day supercomputers 
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attain roughly 109 Flops) to perform useful exper- 
iments. At the present time it appears that such 
performance will only be attainable through the 
use of parallel architectures. 

A number of researchers have implemented 
ocean models on contemporary parallel comput- 
ers. Two significant examples, which deal with 
the implementation of global models, are Smith, 
Dukowicz and Malone [11] and Semtner and 
Chervin [10]. Smith et al. describe the use of a 
SIMD, distributed memory, 2048 processor CM-2 
Connection Machine whereas Semtner and 
Chervin use a MIMD, shared memory, 4 proces- 
sor CRAY X-MP/48. The implementation tech- 
nique used by Smith et al. is domain decomposi- 
tion (the ocean is divided up in longitude-latitude 
columns). The technique used by Semtner and 
Chervin may be viewed as a form of task farming 
where tasks are obtained by dividing the ocean 
into even sized longitude-depth slabs. By suitable 
utilization of the Cray's ability to read into and 
write from main memory concurrently with calcu- 
lation work, processors are never delayed by the 
need to perform I / O  operations. In practice 
Semtner and Chervin report attaining efficiencies 
of over 99%. Study of examples such as these 
reveals that in order to extract as much speed as 
possible from the underlying hardware, numerical 
techniques and programming styles must be aimed 
at specific architectural details. 

In global ocean circulation modelling a major 
issue when designing a parallel program is how to 
handle continents, islands and ocean-floor topog- 
raphy, which combine to make the domain highly 
non-regular. A simple approach is to use a regu- 
lar grid representation of the world combined 
with an array of 'start/stop indices' to mark the 
beginning and end of regions of water. These 
markers are then used to ensure that only points 
which correspond to areas of water are solved 
for. While being somewhat wasteful of store this 
technique is popular because it is relatively easy 
to program. On vector computers too much 'start- 
ing and stopping' can defeat the vectorization 
process. If the vector operation start-up time is 
long (machine specific) and the areas of land are 
small, it is more efficient to treat land as though 
it is ocean during calculations and to mask out 
the land's effect at the end of each iteration. This 
approach has been used, for example by Stevens 
[12], on CDC Cyber 205 and AMDAHL VP1200 

vector supercomputers. Counter-intuitively, some 
times doing more calculations leads to a faster 
program! 

A further major issue in writing efficient ocean 
modelling code is dealing with the sheer volume 
of data. In the FRAM project for example as 
much as 100 Megabytes of information had to be 
dumped every 10 model days plus 1 Megabyte 
every model day. Obviously a fast I / O  system, 
which will not unduly delay the main calculation 
work, is required. 

The remainder of this paper considers ocean 
modelling in the context of the Meiko Computing 
Surface. A simplified ocean model is described in 
Section 2 and its implementation on a Computing 
Surface in Section 3. Section 4 presents some 
experimental results and Section 5 gives our con- 
clusions. The reader should note that this paper 
is an extension of work described in Clare and 
Stevens [4]. 

2. The sequential ocean modelling code 

2.1 Three-dimensional models 

Many of the three-dimensional ocean circula- 
tion models used over the past twenty years origi- 
nate from the pioneering work of Bryan [3]. Over 
the years a number of enhancements to the model 
physics, the numerical scheme and the computer 
code have been made. A good description of the 
basic model and code structure can be found in 
Cox [5]. Semtner [9] describes the history of model 
development to that date. 

2.2 A simplified model 

Given the complexity of three-dimensional 
ocean circulation models such as that described 
by Cox [5], it was decided to produce a reduced 
physics version to test on the Meiko Computing 
Surface. The vertical structure, which is repre- 
sented by a number of different levels in the 
original model, is replaced by a single active layer 
overlaying a much deeper passive layer. All the 
usual horizontal processes were retained. This 
well-known simplification, which removes the ver- 
tical dimension from the problem, results in a 
one layer reduced gravity model. 
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The model equations are 
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The variables A, 4, u, v, ~/, r ~, r 4 represent 
longitude, latitude, zonal velocity, meridional ve- 
locity, layer thickness, zonal wind stress and 
meridional wind stress respectively. The radius of 
the Earth is a, the reduced gravity is g ' ,  the 
density of the active upper layer is p and 
f =  2 ~  sin 4 is the Coriolis parameter  where 
is the speed of angular rotation of the Earth. The 
coefficient for horizontal momentum mixing is 

a m • 
The model is discretized in the same way as 

Cox [5], using a staggered spatial grid. The finite 
difference scheme uses centred differencing in 
space and leapfrogging in time, which is energeti- 
cally consistent. This results in three explicit 
prognostic equations for u, v and "0, which can 
be simply stepped forward in time. A Robert  time 
filter [1] is used to remove the computational 
mode associated with leapfrogging. 

velocities respectively and E r A represents the sur- 
face layer thickness. Each of these arrays is 
three-dimensional. The first two dimensions rep- 
resent the surface layer of the ocean as a rectan- 
gular grid of points. These dimensions are of size 
I MT by JMT (which are reconfigurable, program 
constants). The third dimension in u,  v and ETA 
is needed so that the state of the ocean can be 
recorded for consecutive timesteps. 

The program is built around a single main 
loop, each iteration of Which simulates a timestep. 
Within this loop the calculation proceeds from 
the southernmost row (latitude line) of ocean 
points to the nothernmost. For each row, the 
subroutines VELOC and THICK are called. These 
subroutines calculate new values of the velocity 
and thickness for all the points in the current 
row. The calculation for a given row depends 
upon the current values in the row itself and on 
the values in the neighbouring north and south 
rows over the previous two timesteps. Hence, the 
arrays u, v and E T A are of size 3 in their third, 
temporal dimension. 

Below is the fragment of code that implements 
the calculations involved in a single timestep. 

DO 380 J=2 , JMT-I 

IF (J .NE. JMT-I) CALL VELOC(J) 

CALL THICK(J) 

380 CONTINUE 

Rows 1 and J MT are always land and therefore 
not updated. Since the finite difference grid is 
staggered, row JMT - 1 of U and v also represents 
land and therefore VEL0C is not called for this 
rOW. 

This row update strategy is inherited from the 
implementation of the full three-dimensional 
model. Due to computer memory limitations it is 
often impossible to hold the full three-dimen- 
sional model grid in core. Hence the code has 
been written in a style which enables rows to be 
cycled through memory as required. Note also 
that by operating on complete rows at a time, 
VELOC and THICK, could be optimized for the 
original target, vector processing architectures. 

2.3 Overview of the sequential program 

The basic structure of the more complex code 
was retained. The ocean is represented by the 
three arrays of real numbers: u,  v and ETA. U 
and v represent the eastwards and northwards 

3. Parallel implementation on the ( 'olnputing 
Surface 

Parallelism is achieved by using the well docu- 
mented and obviously appropriate technique of 



14 A.R. Clare, D.P. Stevens 

geometric decomposition. The structure of the 
parallel program is similar in many ways to that 
described by Barbieri, Bray and Garret  [2], for 
example, which describes the implementation of 
a weather prediction program on the Computing 
Surface. 

The arrays u, v and ETA are sliced up in their 
north-south, JMT dimension (so that the cuts run 
from west to east) and balanced across the avail- 
able processors. The processors are simply con- 
nected in a ring. Each processor runs a copy of 
the same program but works with a different 
section of the ocean. Where necessary, different 
actions are programmed for different processors 
by branching on a processor's unique, numerical 
identifier. 

A one-dimensional decomposition was chosen 
rather than a two-dimensional decomposition be- 
cause it offered better potential performance. 

This derives from the transputer's ability to over- 
lap communication with calculation [8]. Given an 
appropriate application and careful program- 
ming, the cost of any communication can be 
reduced to a constant (the set up time). In such 
circumstances it is better  to have 2 neighbours 
(1D scheme) rather than 4 (2D scheme) in order 
to minimize the overall ratio of communication to 
calculation. Since it was possible to exploit this 
feature of the transputer for the ocean modelling 
application a 1D decomposition was chosen. A 
similar performance model to that described by 
Barbieri et al. [2] can he applied to the parallel 
program described here. 

The decision to perform a one-dimensional 
decomposition simplified the coding work. For 
example, the main two prognostic sub-routines, 
THICK and VELOC, which had been written to 
operate on complete west-east rows of the ocean 

Table 1 
The results of the North Atlantic experiment. 

System Processors Time (secs) Mflops Speedup Efficiency 

Amdahl VP1200 (Vector Mode) 1 63 122.48 
Amdahl VP1200 (Scalar Mode) 1 740 10.50 

CRAY X-MP 1 67 116.01 

DEC Station 5000 1 1141 6.76 

Sun SPARC 1 1 3784 2.04 
Sun SPARC 2 1 1585 4.87 

Inmos T800 1 31372 0.25 1.00 1.00 
2 16822 0.46 1.86 0.93 
3 11151 0.69 2.81 0.94 
4 8465 0.91 3.71 0.93 
5 6789 1.14 4.62 0.92 
9 3770 2.05 8.32 0.92 

11 3101 2.49 10.12 0.92 
20 1764 4.37 17.78 0.89 
25 1434 5.38 21.88 0.88 
33 1139 6.77 27.54 0.83 
50 835 9.24 37.57 0.75 
99 513 15.04 61.15 0.62 

Intel i860 1 1480 5.21 1.00 1.00 
2 654 11.78 2.26 1.13 
3 501 15.40 2.96 0.99 
4 402 19.18 3.68 0.92 
5 345 22.33 4.29 0.86 
9 239 32.27 6.19 0.69 

11 215 35.77 6.87 0.62 
20 188 41.01 7.87 0.39 
25 177 43.39 8.33 0.33 
33 174 44.30 8.50 0.26 
50 178 43.29 8.31 0.17 
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at a time, were left untouched by the port to the 
parallel machine. 

Given the simplicity of this particular ocean 
model and the associated geometric decomposi- 
tion scheme, plus the fact the solving partial 
differential equations by finite differences must 
constitute one of the main uses of parallel com- 
puters at the present time, the coding work was 
felt to be unduly difficult. Two major factors led 
to difficulties: 
(1) The authors lack of previous experience with 

parallel programming and in particular with 
using CSTools. 

(2) It was felt that the facilities provided by 
CSTools stopped short of what was required 
to implement this application with ease. 

For example, operations such as 'exchange data 
with neighbour', which occur often in parallel 
finite difference programs, had to be coded by 
hand. This required mastery of the complicated 
CSTools routines for handling asynchronous com- 
munications. A further example is that a special 
scheme had to be devised so processors would 
write their results (in the form of large binary 
data files) in a coordinated fashion. This is be- 
cause CSTools has no built-in facilities to neatly 
handle the situation where many processors must 
each contribute a portion of a program's overall 
results. The scheme finally adopted for this latter 
problem, makes each processor write its results to 
a separate file and then uses additional, serial, 
utility programs to rework these files into what- 
ever other form might be required. Finding effi- 
cient and elegant solutions to these and similar 
problems consumed a significant amount of time. 
In view of these experiences, the authors imagine 
that CSTools compares badly with some other 
parallel programming environments, such as Ex- 
press [6] for example which appears to provide a 
higher level of support for the programmer. 

4. Performance experiments 

4.1 The North  Atlantic experiment 

A one year simulation of an idealized North 
Atlantic model was used by Clare and Stevens [4] 
to compare the parallel and serial implementa- 
tions. Since that time the authors have been 
allowed access to a larger array of Intel i860 
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Fig. 1. The number of processors versus the time taken to 
complete a one year run of the North Atlantic model (log 
scales). The dotted line is for Inmos T800 processors and 

the solid line is for Intel i860 processors. 

processors. Furthermore some of the machines 
have had compiler upgrades, which has improved 
their preformance. A revised set of results are 
illustrated in Table 1 and Fig. 1. 

To summarize: only selected extracts from the 
multi-processor results are tabulated; the geomet- 
ric decomposition consisted of 99 'grains' of work 
and therefore 99 processors was the maximum 
that could be fruitfully used on the problem; the 
timing figures given for a single transputer and a 
single i860 processor were obtained by using the 
original, sequential version of the program 
whereas the figures given for two or more proces- 
sors were obtained using the parallel version; the 
results show that the two supercomputers (the 
CRAY and the Amdahl) far out-perform the 
other machines; the super-linear speedup exhib- 
ited by two i860's is probably caused by the single 
processor's performance being limited by the 
speed at which it can access its local main mem- 
ory, rather than the rate at which it can perform 
floating-point calculations; the rapid drop in effi- 
ciency, as more i860's are used, is due to their 
performance being communication bound for this 
model. 
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The North Atlantic model, which is based on a 
71 by 101 grid, was the author's first attempt at 
producing a parallel ocean modelling code. It was 
designed with transputers in mind and at a time 
when the authors did not envisage having access 
to i860's. To more fully explore the potential of 
the i860's a second, more computationally de- 
manding model has been developed, as described 
below. 

4.2 The Tropical Pacific experiment 

As with the North Atlantic, modelling the 
Tropical Pacific is a classic oceanographic prob- 
lem. Gill [7] provides a good introduction to the 
subject. The ocean basin extends from 32°S to 
32°N and from 0°E to 100°E (note that while the 
latitudinal position of the ocean basin is crucial 
the longitudinal position is arbitrary). The hori- 
zontal resolution is 0.25 ° , which is approximately 
27 km. The size of the arrays for the prognostic 
variables is 401 × 258. This provides 256 'grains' 
of work. 

A constant easterly wind stress of 0.05 Nm-2 
is specified at the ocean surface. The parameters 
A m and g '  have the values 2 x 1 0 3  m2s - l  and 
9.806 x 0.003 ms-~. The ocean is initially at rest 
with the thickness of the upper layer set to 300 m. 
The model is then integrated forward in time for 
7 weeks using 1 hour timesteps. 

The results from this experiment are displayed 
in Table 2 and Fig. 2. It is immediately apparent 
that this model is less communication bound when 
run on i860's. That is, the efficiency does not 
decay so rapidly as the number of processors is 
increased. Further investigation has revealed that 
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Fig. 2. The number of i860 processors versus the time taken 
to complete a seven week run of the Tropical Pacific model 
(solid line). The dotted line shows the time taken excluding 

I /0 .  Both axes are logarithmic. 

a significant proportion of the reported i860 time, 
when the number of processors is large, is due to 
I / O .  For example, the time spent writing results 
by the slowest processor in the experiment with 
32 i860's is 31.2 seconds. This compares with less 
than one tenth of a second on both supercomput- 
ers, which are writing out 32 times more data 
than each i860. If the 32 i860's had a comparable 
I / O  system, their overall Mflop rate might be 
expected to exceed 140 Mflops. 

Table 2 
The results of the Tropical Pacific Experiment 

System Processors Time (secs) Mflops Speedup Efficiency 

Amdahl VP1200 (Vector Mode) 1 49 267.42 

CRAY X-MP 1 92 142.43 

DEC Station 5000 1 2771 4.73 

Sun SPARC 1 1 6574 1.99 
Sun SPARC 2 1 2800 4.68 

Intel i860 1 2244 5.84 1.00 1.00 
2 1128 11.61 1.99 0.99 
4 595 22.02 3.77 0.94 
8 332 39.46 6.76 0.84 

16 179 73.18 12.54 0.78 
32 123 106.45 18.24 0.57 
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A surprising feature of the results is that the 
Mflop rate achieved by the Amdahl, when com- 
pared with the result from the North Atlantic 
experiment, is more than double and the total 
time required to solve this more complex problem 
is less. This is because the performance of the 
Amdahl is improved when vector lengths are 
longer. In addition there are less vector startup 
operations required in the Tropical Pacific model 
because it is run for fewer timesteps. The CRAY 
does not exhibit similar behaviour because its 
architecture is based on fixed length vector regis- 
ters (64 words long) rather than arbitrary length 
vector pipelines. 

5. Conclusions 

This paper has considered the Computing Sur- 
face as a platform for ocean modelling work. The 
raw speed of the i860 processors is impressive 
and comparable with that of contemporary super- 
computers. Unfortunately, the I / O  system in the 
Computing Surface is not of a similar high stan- 
dard and this significantly reduces overall perfor- 
mance for this application. 

The simple technique of geometric decomposi- 
tion is obviously appropriate for parallel ocean 
modelling when the method of finite differences 
is being used. In practice, coding work is compli- 
cated by the need to tailor code to fit specific 
computer architectures in order to maximize per- 
formance. For example, on the Computing Sur- 
face this typically requires exploiting the proces- 
sors' ability to overlap communication with calcu- 
lation. The author's look forward to the day when 
standard programming interfaces will simplify 
coding work while sustaining the high perfor- 
mance associated with hand-tuned programs. 
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