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Iodine is a critical trace element involved in many
diverse and important processes in the Earth system.
The importance of iodine for human health has
been known for over a century, with low iodine
in the diet being linked to goitre, cretinism and
neonatal death. Research over the last few decades
has shown that iodine has significant impacts on
tropospheric photochemistry, ultimately impacting
climate by reducing the radiative forcing of ozone
(O3) and air quality by reducing extreme O3
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concentrations in polluted regions. Iodine is naturally present in the ocean, predominantly as
aqueous iodide and iodate. The rapid reaction of sea-surface iodide with O3 is believed to be
the largest single source of gaseous iodine to the atmosphere. Due to increased anthropogenic
O3, this release of iodine is believed to have increased dramatically over the twentieth century,
by as much as a factor of 3. Uncertainties in the marine iodine distribution and global cycle
are, however, major constraints in the effective prediction of how the emissions of iodine and
its biogeochemical cycle may change in the future or have changed in the past. Here, we
present a synthesis of recent results by our team and others which bring a fresh perspective
to understanding the global iodine biogeochemical cycle. In particular, we suggest that future
climate-induced oceanographic changes could result in a significant change in aqueous iodide
concentrations in the surface ocean, with implications for atmospheric air quality and climate.

1. Iodine in the atmosphere
Atmospheric iodine is mainly derived from the oceans, which contain approximately 70% of
the Earth’s surface inventory of natural iodine [1]. Volatilization of oceanic iodine, and in
smaller amounts, terrestrial iodine, to the atmosphere involves both biological and non-biological
pathways [2–5]. The ease of volatilization of iodine, in both inorganic and organic forms, is
considerably greater than that of chlorine and bromine and this aspect of its geochemistry makes
iodine unique among the halogens.

The role of iodine on the atmosphere was first explored by Chameides & Davis [6], who
used a photochemical model to infer significant impacts on tropospheric photochemistry caused
predominantly by oceanic emissions of methyl iodide (CH3I). Observational evidence of the
widespread impacts of reactive iodine came nearly three decades later [7,8], confirming that
iodine could be highly significant in influencing atmospheric photochemistry over the oceans.
Since then, several observational studies have confirmed the ubiquitous presence of iodine oxide
radicals (IO) in the marine troposphere [9–15].

As indicated in figure 1, gaseous iodine compounds emitted from the ocean are rapidly
(minutes to days) photolysed in the atmosphere to produce iodine atoms, which react with
O3 in the atmosphere to form the IO radical. IO can be considered a ‘smoking gun’ for the
presence of active iodine chemistry. It reacts further with nitrogen and hydrogen oxides to
perturb important aspects of atmospheric chemistry. Due to its significant role in a multitude
of atmospheric processes, atmospheric iodine cycling is now being incorporated into chemical
transport and air quality models. These models show that iodine has a profound impact
on tropospheric photochemistry, causing a reduction in tropospheric O3 (a key climate and
air quality gas) of approximately 15% globally [18,19], reducing summertime O3 exposure
over Europe by around approximately 15% [20], representing an important negative feedback
mechanism on O3 [21–23] and acting as a source of aerosols [19,24,25]. In addition, iodine
has recently been shown to be injected into the stratosphere, where it may represent a small
but significant contribution to O3 depletion [26,27]. However, critical uncertainties remain
in determining the impacts of iodine on the atmosphere and how they may change in the
future.

Over the last decade or so, evidence has emerged that oceanic emissions of iodinated organic
compounds such as CH3I, CH2ICl and CH2I2 are likely not the primary source of atmospheric
iodine, as was originally thought, but may comprise only around 20% of the total iodine
flux to the atmosphere globally [13,21,28]. The dominant fraction (80%) is instead believed
to arise from the heterogeneous reaction of iodide (I−(aq)) with gaseous O3 at the sea surface,
releasing I2 and HOI [17,21,29] (reactions 1–6). However CH3I, as one of the longer-lived
precursors, constitutes an important source of iodine above the marine boundary layer [26].
Emission inventories for the iodocarbons have been compiled by Bell et al. [30] and Ordóñez
et al. [31].
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Figure 1. Schematic to illustrate tropospheric iodine chemistry. Average global annual mean burdens (Gg I) are shown below
key IY species (I, I2, HOI, IO, OIO, HI, INO, INO2, INO3, I2Ox , I2O3, I2O4), with global total fluxes shown on arrows (Tg(I) year−1).
Red lines, photolysis; blue lines, chemical pathways; green lines, emission source; orange lines, heterogeneous pathway; purple
lines, depositional pathway. Ozone deposition to the oceans (Tg(O3) year−1) is also shown in brown to illustrate the driving force
behind the inorganic emissions. Adapted with permission from [16] and updated to give values from the GEOS-Chem (v. 12.9.1)
model, which uses sea-surface iodide fields from [17]. (Online version in colour.)

I−(aq) + O3(g or aq) → IOOO−, (R1)

IOOO− → IO−
(aq) + O2, (R2)

IO−
(aq) + H+ → HOI(aq), (R3)

HOI(aq) + I−(aq) + H+ � I2(aq) + H2O, (R4)

I2(aq) � I2(g), (R5)

and HOI(aq) � HOI(g). (R6)

The estimated magnitude of global sea–air emissions of I2 and HOI, as shown in figure 1,
originate from the laboratory work and parametrizations of Carpenter et al. [21] and MacDonald
et al. [17], mostly using experiments with iodide solutions. We have recently confirmed these
parametrizations for I2 emissions from ozone reactions with iodide-containing solutions, using
a sensitive broadband cavity-enhanced absorption spectroscopy (BBCEAS) method to measure
at ambient conditions [29]. All these studies have noted that I2 emissions from real seawater
are lower than from artificial iodide solutions, most likely due to the presence of (poorly
characterized) oceanic dissolved organic material and/or surfactants (see review by Hansell
& Carlson [32]). There were insufficient data in the original studies [17,21] to parametrize
the reduction in I2 emissions or to identify the mechanism/s involved. Several studies have
found that added organic material, depending on its properties, can either reduce or increase
I2 emissions from aqueous solution, due to different physical or chemical mechanisms [33–36].



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200824

..........................................................

In the first study using samples of the sea-surface microlayer (SML), we have confirmed that I2
emissions are decreased compared to artificial seawater by up to a factor of 10, and suggest that
this reduction likely arises from the increased solubility of I2 in the organic-rich interfacial layer
of seawater [29]. However, this study was carried out using only limited SML samples from the
same location in the North Sea. More data are required to confirm how the SML in other locations
affects I2 emissions and, importantly, to determine any influence on HOI, which is the single
largest contributor to iodine emissions (figure 1).

Global modelling studies [18,37] have shown that the existing parametrizations for oceanic
inorganic iodine (I2 and HOI) release, alongside climatologies of organic iodine emissions [31],
result in reasonable simulation of the tropospheric IO observations which have been made in
different oceanic regions [7,10,13,38]. However, a recent study with simultaneous observations
of IO, O3 and sea-surface iodide in/over the Indian Ocean and the Southern Ocean found
that the observed IO concentrations could not be adequately computed using inorganic iodine
fluxes and the currently understood chemistry [15]. Calculated sea–air fluxes of HOI and I2,
using the MacDonald et al. [17] global iodide fields and measured O3 concentrations, were used
as inputs to two independent global atmospheric chemistry models (GEOS-Chem and CAM-
Chem). Both models suggested higher than observed IO levels in the Indian Ocean region but
under-predicted [IO] for the Southern Ocean region [15]. However, although there was also no
correlation between measured and modelled IO levels across the entire dataset, the GEOS-Chem
modelled IO showed a significant positive correlation with observed IO above the 99% confidence
limit for data north of the polar front. These discrepancies highlight the major uncertainties
which still exist in our understanding of iodine biogeochemistry and call for further studies of
IO and related halogenated species in the ocean and atmosphere. There is also a need for further
studies relevant to polar regions, where elevated levels of IO [39] and iodine associated with new
particle formation events [24,40] have been detected. There is evidence of release of iodine (and
other halogens) from sea-ice (e.g. [41] and references therein) but, as yet, no consensus on the
contribution of various iodine sources to the polar atmosphere.

Alongside its contribution to atmospheric iodine emissions, sea-surface iodide has also been
identified as an important depositional sink for tropospheric ozone [42,43]. Dry deposition of O3
to the Earth’s surface is estimated to account for about 25% of overall tropospheric O3 removal.
Loss to the ocean surface, via reaction R1, is believed to represent the largest single depositional
sink by land cover class [44,45]; this impact of iodine on O3 is in addition to the gas phase catalytic
cycles occurring in the atmosphere. Model calculations show that reaction R1 has the potential to
reduce surface O3 mixing ratios through O3 deposition alone by several ppb [46–48], which is of
a magnitude where it can influence human exposure and impact on ecosystems and agricultural
crop yields. However, both the mechanistic details and the rates of oceanic O3 deposition are
subject to much greater uncertainty than deposition to land, which translates into large differences
in the predicted global ocean dry deposition flux [44].

2. Sea-surface iodide
Sea-surface iodide, which can vary from low nanomolar concentrations at high latitudes to several
100 nM in tropical and coastal seas (table 1) [49], is a critical factor in controlling both atmospheric
iodine concentrations and oceanic dry deposition of O3, via reaction (R1). Atmospheric models
have used parametrizations of iodide concentrations to provide boundary conditions for global
iodide fields [18,46,47,53]. Such parametrizations have generally fitted relatively small numbers
of sea-surface iodide observations to simple functions using proxies for iodide such as dissolved
nitrate and sea-surface temperature [17,43,49]. We recently updated our global compilation
of iodide observations (1967–2018) [50], resulting in a 45% larger sample size (n = 1342) than
described previously (n = 925; table 1, [49]). The new data include a large number of new
observations from the previously very under-sampled Indian Ocean basin [54], so large-scale
sea-surface iodide transects are now available for all ocean basins except the Arctic [50]. Using
the expanded dataset and a machine learning random forest regression (RFR) approach, we have
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Table 1. Summary statistics for observed andpredicted global sea-surface iodidefields. Predicted values are annually averaged.
Model simulations are for the present day. Note differences in maximum predicted values may arise from differences in the way
very high observational data points have been treated when developing models.

[Iodide], nM

mean standard deviation lower quartile median upper quartile maximum

observational datasets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chance et al. [49] (n= 925) 92 81 28 77 140 700
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chance et al. [50] (n= 1342) 108 111 38 89 147 2039
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sea-surface temperature parametrizations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MacDonald et al. [17] 59 35 17 51 87 126
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chance et al. [49] 128 65 49 122 179 226
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

multivariate machine learning parametrization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sherwen et al. [51] 106 46 52 106 139 220
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

global biogeochemical model simulation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wadley et al. [52] 122 75 65 100 149 973
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

generated a high-resolution (0.125° × 0.125°, ∼12.5 km × 12.5 km) monthly dataset of present-day
global sea-surface iodide [51]. The iodide observations were used as the dependent variable and
co-located ancillary parameters (including temperature, mixed layer depth, salinity and nitrate)
from global climatologies as the independent variables.

As shown in figure 2a, the predicted iodide distributions from the previous statistical
relationships [17,49] and from Sherwen et al. [51] all reflect the large-scale observed ocean
distribution of iodide, with high concentrations in low latitude warm waters, and low iodide
concentrations at high latitudes in seasonally overturning cold waters [49,50]. The iodide
concentrations calculated in Sherwen et al. [51], using the RFR approach, better capture the
observed spatial variability and produce significantly higher concentrations (40% on a global
basis) than the commonly used MacDonald et al. [17] parametrization (figure 2b).

However, while these statistical relationships provide a generally good fit to the observational
dataset, their extrapolation beyond the data range for which the relationships are derived cannot
be carried out with confidence, nor do they allow prediction of whether oceanic surface iodide
may change in the future, or how it may have changed in the past. A detailed process-based
knowledge of ocean iodine cycling and its feedbacks with changing environmental parameters is
required for such predictive capability.

Below, we describe the current state of knowledge regarding iodine cycling in the ocean, and
our recent work to develop a prototype ocean iodine model as a first step towards predicting
global oceanic iodine distributions.

3. Iodine in the ocean
In the ocean, aqueous iodide (I−, reduced form) and iodate (IO3

−, oxidized form) are
the dominant iodine species, with a total concentration of generally 400–500 nM [49].
Thermodynamically, iodate is the favoured form of iodine (except in very oxygen-depleted
waters) and it is the overwhelmingly dominant form below the oceanic mixed layer in oxygenated
seawater. The presence and distribution of iodide in the surface ocean is essentially determined
by its biologically mediated interconversion with iodate and the processes of physical mixing and
advection [49,52,56,57]. In the euphotic zone, reduction of iodate to iodide, which has been linked
to primary productivity (e.g. [58–60]), means that up to 50% of iodine may be found as iodide. The
iodate to iodide transformation has been observed to take place in natural seawater on a timescale
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Figure 2. (a) Predicted latitudinal average sea-surface iodide plotted against latitude, overlaid with observed concentrations,
from [51]. Solid lines give the mean values and shaded regions give± the average standard deviation. For the random forest
regression (RFR) ensemble, the standard deviation is themonthly standard deviationwithin all ensemblemembers. Black filled
diamonds show non-coastal observations and unfilled ones show coastal values. The blue dashed line shows the prediction
including data from the Skagerrak strait [55]. The latitudinal range of the horizontal axis is limited to latitudes not permanently
covered by sea-ice or land. (b) Regression plots showing comparisons between predicted values and observations in the entire
dataset (blue, n= 1293) and ‘withheld’ data not used in the prediction (orange, n= 259), ‘withheld’ data classed as coastal
(green, n= 157) and the ‘withheld’ data classed as non-coastal (pink, n= 102). Solid lines give the orthogonal distance
regression line of best fit. The dashed grey line gives the 1 : 1 line. Root mean square error (RMSE) for each line is annotated
in each subplot in nanomolar (nM). (Online version in colour.)

of days to weeks [61], but the mechanism is poorly understood, and it is not known whether it
takes place by an assimilatory process or as an extracellular or cell surface/dissimilatory reaction.
Reduction by nitrate reductase enzymes [62] and reactions of iodate with reduced sulfur species
released from cells during senescence [59] have been proposed, but neither of these mechanisms
has been confirmed as a significant route of conversion.

Once formed, kinetically stable iodide oxidizes back to iodate slowly; however, this process
is highly uncertain with estimated lifetimes ranging from approximately six months to
approximately 40 years [49,63]. Earlier estimates of iodide oxidation rate have typically relied
upon mass balance approaches (e.g. [56]). Recent measurements made using a radiotracer
approach have yielded oxidation rates for natural seawater consistent with these estimates (118–
189 nM yr−1; [63]). Except for processes specific to the sea-surface microlayer, such as oxidation
by O3, rates of chemical oxidation of iodide to iodate in seawater are too slow to account for the
observed distribution of iodine species [64], and the process has been assumed to be biologically
mediated. The uncertainty around the rates and processes involved has been suggested to be
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Figure 3. Simplified schematic of iodine cycling in the surface ocean. Green lines represent biologically mediated reactions
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appears to be a very minor component of total iodine in open ocean waters (see [52] and references therein). (Online version in
colour.)

a major limitation to the development of ocean models of iodine transformations [65]. Based
on water column observations, it has been proposed that the oxidation of iodide to iodate
may be associated with bacterial nitrification [65,66]. Our work has recently confirmed this
for laboratory cultures of ammonium-oxidizing bacteria. We observed a significant increase in
iodate concentrations compared to media-only controls in the ammonium-oxidizing bacteria
Nitrosomonas sp. (Nm51) and Nitrosoccocus oceani (Nc10) supplied with I− and NH4

+, indicating
that iodide oxidation to IO3

− is linked to nitrification, and specifically ammonium oxidation
[67]. Cell-normalized production rates were 15.69 (±4.71) fmol IO3

− cell−1 d−1 for Nitrosomonas
sp. and 14.35 (±8.35) fmol IO3

− cell−1 d−1 for Nitrosococcus oceani. Nitrification is known
to occur throughout the oceanic water column [68], suggesting that iodide oxidation to
iodate could be widespread throughout the world’s oceans. This mechanism provides an
alternative or complementary linkage of the ocean iodine and nitrogen cycles, as suggested by
others [69].

Figure 3 summarizes the major components of the upper ocean iodine cycle in oxygenated
waters and its interaction with the atmosphere.

The above summarizes the key biogeochemical transformations of iodine species in
oxygenated waters. In low oxygen (less than approx. 10 µmol kg−1) environments, such as oxygen
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minimum zones (OMZs) associated with coastal upwelling systems and anoxic basins such
as the Black Sea, iodide is thermodynamically stable and tends to dominate aqueous iodine
speciation (e.g. [70–72]). However, evidence from the Pacific boundary systems suggests that
iodine speciation in such systems is not a simple function of oxygen concentration and that
substantial iodate concentrations may sometimes persist due to slow and variable reduction rates
[63,73]. Furthermore, very high ‘excess’ iodide concentrations of up to several micromolar have
been observed in association with low oxygen waters [54,72–74]. Such concentrations cannot be
accounted for by the reduction of iodate in the water column, and instead have been ascribed to
the release of iodide from sediments under low oxygen conditions [54,72,74]. While low oxygen
waters are typically subsurface, elevated iodide associated with such systems has been observed
to outcrop at the ocean surface [54,55,72,73] and hence can affect ozone deposition and iodine
emission from the sea surface at a local scale. As the extent of ocean deoxygenation increases
(e.g. [75]), the incidences of elevated iodide at the sea surface could become more frequent in the
future, with possible impacts on atmospheric chemistry.

4. Development of an ocean iodine cycling model
Based on the current knowledge of oceanic iodine processes, as discussed above, we have
developed the first ocean iodine biogeochemical cycling model that incorporates surface ocean
iodine cycling and circulation [52]. Our model captures the processes responsible for determining
surface iodine speciation on seasonal timescales, and the accumulated impact of this over the
timescale of the circulation in the upper ocean. We do not include any process-based iodine
transformations in the deep ocean, but assume a constant iodate concentration, as observed in the
current ocean. An iodine cycle has also been incorporated into the cGenie Earth System Model
by Lu et al. [76], but this model is concerned with very much longer geological timescales, and in
particular estimating the particulate I : Ca ratio as a tool for reconstructing trends in upper ocean
oxygenation. It represents the surface transformations much more simply, but includes processes
in the deep ocean which are likely to change iodine speciation and hence the sedimentary I : Ca
ratio on geological timescales.

Our model comprises a three-layer advective and diffusive ocean circulation model of the
upper ocean based on the OCCAM ocean GCM and an iodine cycling model embedded within
this circulation which allows transformations between the two primary reservoirs of iodine,
IO3

− and I−, allowing prediction of upper ocean iodine speciation. Because of the relatively
long lifetimes of iodine species in seawater, advection and mixing have a strong influence on
their spatial distributions, and a coupled ocean circulation-biogeochemical model is essential to
describe ocean iodine cycling.

Iodide production (from iodate reduction) only occurs in the mixed layer in the model and
is driven by monthly averaged primary productivity, linked by an iodine to carbon (I : C) ratio
consistent with the values reported in the literature [60,61,77,78]. A satisfactory model fit with
observations cannot be obtained with a globally constant I : C ratio, but the best fit is obtained
when the I : C ratio is dependent on sea-surface temperature, increasing by an order of magnitude
between low and high latitudes. A variation in I : C ratio with sea-surface temperature could be
due to different types of plankton dominating primary production under different oceanographic
conditions. We assume that the biologically mediated conversion of iodate to iodide occurs during
the senescence phase, and hence iodide formation is lagged 60 days from primary production
[58–61].

Iodide is oxidized to iodate in association with ammonium oxidation in the mixed layer,
with the same I : N : C ratio associated with iodide production, and with C and N linked by the
Redfield ratio [52]. The partitioning of ammonium oxidation between mixed layer nitrification
and nitrification in the deep ocean has been quantified by Yool et al. [68], using a global
biogeochemical model, and this partitioning is used in the iodine cycling model. Iodide oxidation
by this mechanism has a profound effect on the model iodide concentrations, as it results in a
spatially variable partial removal of iodide from the mixed layer, and is associated with long
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timescales in environments where nitrification is weak/absent and much shorter timescales
where nitrification is active. The remaining iodide is subject to removal by ocean mixing and
advection and much slower chemical oxidation to iodate. We find that this association of iodide
oxidation with mixed layer nitrification gives a much better model fit to observations compared
to iodide oxidation over fixed timescales [52].

Perturbation of model parameters and processes shows that primary productivity, mixed
layer depth, oxidation, advection, surface fresh water flux and the I : C ratio all have a role in
determining surface iodide concentrations. Due to the relatively long residence time of iodide in
the mixed layer (months), deep vertical mixing in cold, high latitude Arctic waters results in the
dilution of iodide formed by biological activity in the surface ocean, and hence leads to lower
surface iodide concentrations (e.g. [61]). Iodide transferred into deeper ocean waters, below a
few hundred meters, is oxidized to iodate but the timescales of this oxidation and the return of
this water to the surface layer are years to decades. Conversely, in warm, lower latitude waters,
greater stratification facilitates the accumulation of higher iodide concentrations.

Figure 4 shows a comparison of the modelled surface iodide field with observations and
with the parametrizations of Chance et al. [49], MacDonald et al. [17] and the machine
learning approach of Sherwen et al. [51]. The model shows generally good agreement with
the observations. It also shows good agreement with the parametrizations in regions where
observations exist, but significant differences in the Arctic and subtropical gyres, which are poorly
sampled (there are currently no observations in the Arctic). The shallow halocline in the Arctic
results in multi-annual residence times for surface waters, allowing iodide to accumulate year-
on-year, resulting in high modelled surface concentrations. By contrast, in the highest southern
latitudes, stratification is weaker and mixed layer depths are generally deeper, resulting in shorter
residence times of surface waters, and more dilution of iodide.

The model predicts quite low iodide in the subtropical gyres, predominantly because of low
productivity and therefore slow iodate to iodide conversion, yet relatively rapid nitrification-
dependent iodide oxidation. The Chance et al. [49] and Sherwen et al. [51] parametrizations
however predict high iodide in the ocean gyres, consistent with observations at similar latitudes.
Advection redistributes iodide within the ocean gyres and supplies iodide to the Arctic. Thus,
iodide cannot simply be described by local oceanic conditions, and modelled distributions of
iodide are likely to give a more accurate estimate of the ocean surface iodide distribution than
methods based on local relationships alone, which may not capture the full range of processes
involved. Observations of iodide in currently under-sampled regions, and improved process
understanding, are necessary to fully evaluate and develop this prototype iodine cycling model.

Nevertheless, we have used the model to tentatively explore potential future changes in
ocean iodide. Specifically, prompted by our bacterial culture experiments which support a link
between nitrification and the oxidation of iodide to iodate [67], we have investigated the impact
of changes in nitrification rate on sea-surface iodide distribution. Rates and spatial distribution
of nitrification in the oceans are influenced by environmental factors such as oxygen level,
temperature and pH (see [79]), all of which are currently changing. Some laboratory- and field-
based studies indicate that ocean acidification may have a detrimental effect on nitrification, with
lower ammonia oxidation rates and slower ammonium-oxidizing bacteria growth rates ([80] and
references therein). Beman et al. [80] have suggested that ammonia oxidation rates could decline
by as much as 3–44% in response to the 0.1 decrease in ocean pH expected over the next 20–30
years. We used our iodine cycling model to investigate the impact of changes of this magnitude by
perturbing nitrification rates by +10, −10, −22 and −44%, which in turn altered iodide oxidation
rates in the model [67]. We find a global mean sensitivity of 0.13 nM increase in surface iodide
for each per cent decrease in nitrification. Figure 5 shows that decreased nitrification rates of the
scale predicted by Beman et al. [80] could lead to an increase in the concentration of sea-surface
iodide across the world’s oceans. The largest changes are likely to occur in regions where iodide
oxidation is a dominant part of the inorganic iodine cycle such as the subtropical gyres, where
they could drive an increase of around 10 nM iodide (equivalent to approx. 10%) [52]. An increase
in oceanic iodide will lead to regional-scale decreases in O3 concentrations, through both greater
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Figure 4. Mixed layer iodide concentrations (a) predicted from the ocean cycling model [52], (b) from observations [49] and
from the parametrizations of (d) Chance et al. [49], (f ) MacDonald et al. [17] and (h) Sherwen et al. [51]. Differences with the
ocean cycling model are shown in the right-hand column. (a) Model, (b) observations, (c) model—observations, (d) Chance,
(e) model—Chance, (f ) MacDonald, (g) model—MacDonald, (h) Sherwen and (i) model—Sherwen. (Online version
in colour.)

O3 deposition to the sea surface and the resulting iodine-initiated catalytic O3-destroying cycles
in the atmosphere.

At high latitudes, the dominant iodide loss process is removal from the mixed layer by seasonal
mixing, so changes in nitrification rates result in only small, but still significant, changes. In these
areas, and elsewhere, changes in ocean mixing and biological productivity in response to climate
change are likely to impact iodine speciation. More work is required to examine the impact
of acidification and other changing oceanic conditions on iodine speciation over longer time
scales.
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5. Past and future impacts of iodine on the atmosphere
Given the uncertainties both in the atmospheric chemistry of iodine (e.g. [5]), and in how the
iodine precursor emissions may be modified in the real ocean environment compared to the
laboratory [29], further studies are required to fully understand iodine emissions and cycling.
Despite these uncertainties, the balance of evidence suggests that the release of iodine from the
sea surface via the ozone-iodide reaction is the major source of atmospheric iodine. Increasing
O3 concentrations since the pre-industrial period (due primarily to increased anthropogenic
emissions of nitrogen oxides) imply that atmospheric iodine should be substantially higher now
than in the past. Recently, this has been confirmed from records from an Alpine ice core [81]
(figure 6) and from a Greenland ice core [82], both showing a tripling in iodine over the latter
half of the twentieth century. These results can be broadly explained by increased oceanic iodine
emissions from the North Atlantic, and show that iodine’s impact on the Northern Hemisphere
atmosphere has accelerated over the twentieth century. They also reveal a coupling between
anthropogenic pollution and the availability of iodine as an essential nutrient to the terrestrial
biosphere. Changes in halogen chemistry have been calculated to reduce by 25% the radiative
forcing from increases in ozone since the pre-industrial era, with increased oceanic iodine
emissions responsible for about one-third of that [23].

Up until now, while changes in oceanic iodine emissions have been explored in the context
of changing anthropogenic surface O3 [83], there have been no attempts to predict how future
climate-induced oceanographic changes could impact on surface ocean iodide and hence iodine
emissions. Based on the predicted global increases in sea-surface iodide arising from the possible
impact of ocean acidification on nitrification, as described in [67], we have estimated the changes
in the emission flux using the GEOS-Chem (v. 12.9.1) model.

We have calculated how changes in global sea-surface iodide concentrations scale with the
resulting global changes in inorganic oceanic iodine emissions (HOI and I2) using the GEOS-
Chem model (v. 12.9.1, [84]), and find that a 1% increase in [I−(aq)] induces an approximately
0.7% increase in iodine emissions. The scaling is near-linear over environmental concentrations
of iodide. These changes are calculated over a short model timescale (3 days), so they give
an instantaneous estimate of emissions change without considering any feedback effects of
changes to surface ozone concentrations. The results of Hughes et al. [67] imply that a change
in the average global sea-surface iodide of +5.7% (6.9 nM) could occur if the maximum decline
in nitrification proposed by Beman et al. [80] over the next few decades takes place. The
corresponding global increase in sea–air iodine emissions (HOI and I2) is of the order of 3.6%.
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Regional increases could be much greater: figure 5 shows an approximately 10% increase in
[iodide] in the subtropical gyres, which would result in an increase of iodine emissions of the
order of 7%. Exploring this scenario demonstrates how the interaction of global changes such as
ocean acidification with the marine iodine cycle has the potential to have impacts on atmospheric
chemistry in the relatively short term. Our iodine ocean cycling model indicates that additional
factors including primary productivity, biological community structure and vertical mixing all
also have a role in determining surface iodide concentrations, so it is anticipated that changes
in these processes may cause further changes in atmospheric iodine emissions over the coming
decades.

6. Conclusion and future developments
Historically, the biogeochemical cycling of iodine has tended to be studied separately, and by
different scientific communities, in its marine and atmospheric compartments. The study of
iodine on an Earth system scale is extremely challenging because its biogeochemical cycles occur
on a vast array of timescales—from seconds for some atmospheric processes to up to millennia
in the ocean. While substantial progress has been made in the last decades on developing
atmospheric models of iodine cycling, global ocean iodine modelling is in its infancy [52]. There
are still large gaps in our basic knowledge that significantly limit how iodine biogeochemistry can
be represented. These include the rates and controls of iodine cycling in the ocean including in
oxygen-depleted waters, and how iodide present at the very surface of the ocean is quantitatively
transformed into iodine emissions to the atmosphere. Major observational gaps which limit our
basic understanding include very little laboratory data and no field data on atmospheric HOI,
believed to be the major carrier of iodine from the ocean to the atmosphere, and a lack of
observations of ocean iodine speciation in some regions, particularly in the subtropical gyres and
in the Arctic. The extent of seasonal variation in sea-surface iodide concentrations at any given
location is also very poorly constrained.

Although the tools to explore the role of iodine in the Earth system are not yet fully developed,
we propose that a consideration of iodine from such a perspective is necessary to understand
the linkages and feedbacks between biogeochemical and physical processes in the ocean and
ozone (and other oxidants) in the atmosphere, which have policy-relevant impacts arising from
emissions of ozone precursors through to climate change, ocean acidification and stratospheric
ozone. We have highlighted here the potential impact of ocean acidification on atmospheric
iodine emissions in the next two to three decades. Further significant changes could arise over
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the coming decades driven by iodine cycling in the ocean through continued ocean acidification,
deoxygenation, and reduced productivity, as well as changes in ocean circulation and vertical
mixing. These changes in iodine have implications for the management of tropospheric ozone
levels by precursor (nitrogen oxides and hydrocarbons) emission control.
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